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• 20000 trauma patients + 250 measurements variables

Center Accident Age Sex Lactactes BP Shock Platelet . . .

Beaujon fall 54 m NA 180 yes 292000
Pitie gun 26 m NA 131 no 323000

Beaujon moto 63 m 3.9 NA yes 318000
Pitie moto 30 f NA 107 no 211000

HEGP knife 16 m 2.5 118 no 184000
...

. . .

Management scheme of a traumatized patient.

TraumaBase project: decision support for patients
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Objective: help the clinicians make decisions

Modelling 
Interpreting  

Model Selection 
Prediction 

… …


Pre-hospital 
Features


with 

missing values

Hemorrhagic 

shock 

Platelet 


  … …

Logistic regression

Linear regression

TraumaBase project: decision support for patients
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TraumaBase: percentage of missing values
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“One of the ironies of Big Data is that missing data play an ever more
significant role.” (Samworth, 2019)

Example

A n× p dataset, each entry has a probability 1% to be missing
independently.

• p = 5 List-wise=====⇒
deletion

95% rows kept

• p = 300 List-wise=====⇒
deletion

5% rows kept

⇒ List-wise deletion impossible

List-wise deletion ?
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• R-miss-tastic: resource website for managing missing data,
150 packages (most based on imputation)

• Books: Schafer (2002), Little & Rubin (2019); Kim & Shao (2013);
Carpenter & Kenward (2013); Stef van Buuren (2018)

Single imputation

Example: (xi, yi) ∼ N (µ,Σ) i.i.d., 70% missing entries on y randomly
Aim: Estimate parameters & their variance
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⇒ have bias & fail to evaluate the uncertainty caused by NA

Literature on missing values
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Example:

X1 X2 X3 Y
NA 20 10 1
-6 45 NA 1
0 NA 30 0

NA 32 35 1
1 63 40 1
-2 NA 12 0

⇒ logistic regression with parameter β

1 Generate M plausible values for each missing entry
X1 X2 X3 Y

3 20 10 1
-6 45 6 1
0 4 30 0
-4 32 35 1
1 63 40 1
-2 15 12 0

X1 X2 X3 Y
-7 20 10 1
-6 45 9 1
0 12 30 0

13 32 35 1
1 63 40 1
-2 10 12 0

X1 X2 X3 Y
7 20 10 1
-6 45 12 1
0 -5 30 0
2 32 35 1
1 63 40 1
-2 20 12 0

2 Perform the analysis on each imputed data set: β̂m, V̂ ar
(
β̂m
)

3 Combine the results (Rubin’s rules):

β̂ = 1
M

M∑
m=1

β̂m V̂ = 1
M

M∑
m=1

V̂ ar
(
β̂m
)

+
1 + 1

M

M − 1

M∑
m=1

(
β̂m − β̂

)2
+ Variability of missing values is taken into account
− Aggregating different models from multiple imputed data is complex

Recommended method 1: multiple imputation
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Modify the estimation process to deal with missing values.
Maximum observed likelihood: EM algorithm to obtain point estimates +
Supplemented EM (Meng & Rubin, 1991) for their variability

+ Perfectly dedicated toward the problem (ML estimates)
− One specific algorithm for each statistical method
− Not many implementations even for simple models (e.g. logistic regression)

− Not a complete methodology

Recommended method 2: EM algorithm

7
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• Complete methodologies for estimation, model selection and
prediction (few competitors) with missing data

• Classical setting (n > p): logistic regression (SAEM)
• High dimension (p ≤ n): parametric & non-parametric

regression (FDR control)

• Software packages

• Implementation of R packages
• Numerical experiments

• Application to the medical dataset—TraumaBase

• Predict the risk of hemorrhagic shock
• Predict platelet levels

Objectives and contributions

8
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Contribution 1:

Logistic regression with missing
covariates

(Jiang , Josse, Lavielle, TraumaBase, 2020)



X = (xij) a n× p matrix of quantitative covariates
y = (yi) an n-vector of binary responses {0, 1}

Logistic regression model

P (yi = 1|Xi;β) =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p
j=1 βjxij)

Covariates
Xi ∼

i.i.d.
Np(µ,Σ)

Log-likelihood for complete-data with the set of parameters
θ = (µ,Σ, β)

`(θ;X, y) =
n∑
i=1

(
log(p(yi|Xi;β)) + log(p(Xi;µ,Σ))

)
.

Logistic regression model
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Decomposition: X = (Xobs, Xmis).

Pattern of missingness: R with Rij =
{

1, if Xij is observed;
0, otherwise.

Missing completely at random (MCAR)

p(R | X) = p(R) e.g. Data lost when merging databases

Missing at random (MAR)

p(R | X) = p(R | Xobs) e.g. Blood pressure not collected at larger
probability in traffic accident.

Missing not at random (MNAR)

p(R | X) = p(R | Xobs, Xmis) e.g. Blood pressure not collected at
larger probability when its value < 90 mmHg.

Assumption: Missing data are Missing at Random
⇒ Ignore modeling missing mechanism

Missing data mechanisms

11
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Aim: arg maxθ `(θ;Xobs, y) =
∫
`(θ;X, y)dXmis.

EM:

• E-step: Evaluate the quantity

Qk(θ) = E[`(θ;X, y)|Xobs, y; θk−1]

=
∫
`(θ;X, y)p(Xmis|Xobs, y; θk−1)dXmis.

• M-step: θk = arg maxθ Qk(θ).

Unfeasible computation of expectation!

MCEM (Wei & Tanner 1990): Generate a large set of samples of
missing data from p(Xmis|Xobs, y; θk−1) and replaces the expectation
by an empirical mean.

Require a huge number of samples to converge!

EM algorithm with missing data

12
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(book, Lavielle 2014) Starting from an initial guess θ0, the kth
iteration consists of three steps:

• Simulation: For i = 1, 2, · · · , n, draw one sample X(k)
i,mis from

p(Xi,mis|Xi,obs, yi; θk−1).

• Stochastic approximation: Update the function Q

Qk(θ) = Qk−1(θ) + γk

(
`(θ;Xobs, X

(k)
mis, y)−Qk−1(θ)

)
,

where (γk) is a decreasing sequence of positive numbers.

• Maximization: θk = arg maxθ Qk(θ).

Convergence: (Allassonniere et al. 2010)
The choice of the sequence (γk) is important for ensuring the almost
sure convergence of SAEM to a MLE.

Stochastic Approximation EM

13
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Target distribution

fi(Xi,mis) = p(Xi,mis|Xi,obs, yi; θ)
∝ p(yi|Xi;β) p(Xi,mis|Xi,obs;µ,Σ).

Proposal distribution gi(Xi,mis) = p(Xi,mis|Xi,obs;µ,Σ)

Xi,mis|Xi,obs ∼ Np(µi,Σi)

µi = µi,mis + Σi,mis,obsΣ−1
i,obs,obs(Xi,obs − µi,obs),

Σi = Σi,mis,mis − Σi,mis,obsΣ−1
i,obs,obsΣi,obs,mis,

Metropolis:

1 z
(k)
im ∼ gi(xi,mis), u ∼ U [0, 1]

2 r = fi(z(k)
im

)/gi(z(k)
im

)

fi(z(k)
i,m−1)/gi(z(k)

i,m−1)

3 If u < r, accept z(k)
im

Only need a few steps of Markov chains in each iteration of SAEM.

Variance estimation:

Given the MH samples of unobserved data, and the SAEM estimate
⇒ Estimate observed Fisher information by empirical means.

Metropolis-Hastings algorithm

14
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With p̃θ the number of estimated parameters in a given modelM,
model selection criterion (penalized likelihood) :

BIC(M) = −2`(θ̂M;Xobs, y) + log(n)d(M),

How to estimate observed likelihood ?

p(yi, Xi,obs; θ) =
∫

p(yi, Xi,obs|Xi,mis; θ)p(Xi,mis; θ)dXi,mis

=
∫

p(yi, Xi,obs|Xi,mis; θ)
p(Xi,mis; θ)
gi(Xi,mis)

gi(Xi,mis)dXi,mis

= Egi

(
p(yi, Xi,obs|Xi,mis; θ)

p(Xi,mis; θ)
gi(Xi,mis)

)
.

Sample from gi (the proposal distribution in SAEM)
⇒ Empirical mean.

Model selection: criterion BIC
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x
(1)
mis, x

(2)
mis, · · · x

(M)
mis ∼ p (xmis | xobs)

pm(y) = p
(
y|xobs, x

(m)
mis

)
: p1 p2 · · · pM

ŷ = arg max
y

p (y|xobs) = arg max
y

M∑
m=1

pm(y)

Prediction: missing values in test set
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x: p = 5, n = 10 000; y ∈ {0, 1}
percentage of missingness = 10%
1000 replicates

Figure: Estimation bias of β̂3.
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Table: Coverage of confidence
interval.

no NA CC mice SAEM

β0 95.2 94.4 95.2 94.9
β1 96.0 94.7 93.9 95.1
β2 95.5 94.6 94.0 94.3
β3 94.9 94.3 86.5 94.7
β4 94.6 94.2 96.2 95.4
β5 95.9 94.4 89.6 94.7

Extended simulations:

• Robustness
(model-misspecification)

• Percentage of missingness

• Separability of classes

Method comparison: estimates & coverage
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Variables

Age

Weight

Height

BMI

Glasgow

Motor Glasgow

Pulse Pressure min

Pulse Pressure at 
arrival

Heart Rate max

Heart Rate at arrival

Hb Hemocue

SpO2

Volume Expander 
colloids 

Volume Expander 
crystalloids. 

▪ 6384 patients 

▪ 14 continuous variables 

Logistic regression with missing values

- - - - - -

- - - - - -

- - - - - -

- - - - - -

- - - - - -

- - - - - -

- - - - - -

+

Hemorrhagic 
shock

𝑃(𝑦 = 1   𝑋; 𝛽̂) ?

Application on TraumaBase

18



Hemorrhagic 
shock

𝑃(𝑦 = 1   𝑋; 𝛽̂) ?

Variables Effect Estimate (std error)

Age + 0.011 (0.0033)

Weight

Height

BMI

Glasgow

Motor Glasgow - -0.16 (0.036)

Pulse Pressure min - -0.025 (0.0050)

Pulse Pressure at 
arrival - -0.021 (0.0056)

Heart Rate max + 0.026 (0.0025)

Heart Rate at arrival

Hb Hemocue - -0.23 (0.031)

SpO2

Volume Expander 
colloids + 0.0019 (0.00021)

Volume Expander 
crystalloids. + 0.00090 (0.00010)

« - » effects

• A low Glasgow score means one 
makes no motor response, often in 
the case of hemorrhagic shock. 

« + » effects

• Older people tend to have a larger 
possibility to suffer from 
hemorrhagic shock. 

Application on TraumaBase

18



Random split : training set (70%) + test set (30%) ( repeated 15 times)
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False Negative costs 10 times more than False Positive⇒ Threshold

Predictive performance
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Parameter estimation:

miss.glist = miss.glm(y~., data = df, maxruns = 500)
summary(miss.glist)

Model selection with BIC:

miss.model = miss.glm.model.select(y, X)
print(miss.model)

Prediction on (incomplete) test set:

pr.saem <- predict(miss.model, X.test)

Also provide solutions for linear regression with missing values:

miss.list = miss.lm(y~., data = df)

R package: misaem (Available in CRAN)

20
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Contribution 2:

Variable selection for high-dimensional
incomplete data

(Jiang, Bogdan, Josse, Miasojedow, Rockova, 2019)



Linear regression model: y = Xβ + ε,

y ∈ Rn, X ∈ Rn×p, ε ∼ N (0, σ2In)

Assumptions:

• high-dimension: p large (including p ≥ n)

• β is sparse with k < n nonzero coefficients

Aims:

• Model selection with FDR control

• Parameter estimation with less bias

• Managing missing values

Model selection in high-dimension

22
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• LASSO (Tibshirani, 1996)
β̂LASSO = arg min

β∈Rp

1
2‖y −Xβ‖

2 + λ‖β‖1,

detects important variables with high probability but includes
many false positives.

• SLOPE (Bogdan et al., 2015) penalizes larger coefficients more
stringently

β̂SLOPE = arg min
β∈Rp

1
2‖y −Xβ‖

2 + σ

p∑
j=1

λj |β|(j),

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and |β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(p).

To control False Discovery Rate (FDR) at level q:
λBH(j) = φ−1(1− qj), qj = jq

2p , XTX = I, then

FDR = E
[

#False rejections
#Rejections

]
≤ q

l1 penalization methods (complete data)

23
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Problem: λ for SLOPE leading to FDR control are typically large.
SLOPE often returns an inconsistent estimation.

⇒ improve?

SLOPE estimate = MAP of a Bayesian regression with SLOPE prior.

β̂SLOPE = arg max
β

p(y | X,β, σ2;λ) ∝ p(y | X,β)p(β | σ2;λ)

where the SLOPE prior:

p(β | σ2;λ) ∝
p∏
j=1

exp
(
− 1
σ
λj |β|(j)

)

Bayesian SLOPE (complete data)

24
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We propose an adaptive version of Bayesian SLOPE (ABSLOPE),
with the prior for β as

p(β | γ, c, σ2;λ) ∝ c
∑p

j=1
I(γj=1)∏

j

exp
{
−wj |βj |

1
σ
λr(Wβ,j)

}
,

Interpretation of the model:

• βj is large enough⇒ true signal; 0⇒ noise.

• γj ∈ {0, 1} signal indicator. γj |θ ∼ Bernoulli(θ) and θ the
sparsity.

• c ∈ [0, 1]: the inverse of average signal magnitude.

• W = diag(w1, w2, · · · , wp) and its diagonal element:

wj = cγj + (1− γj) =
{
c, γj = 1
1, γj = 0

.

Adaptive Bayesian SLOPE (complete data)

25



Advantage of introducing W :

• when γj = 0, wj = 1, i.e., the null variables are treated with the
regular SLOPE penalty

• when γj = 1, wj = c < 1, i.e, smaller penalty λr(Wβ,j) for true
predictors than the regular SLOPE one

Null β Non-null β

Figure: comparison of SLOPE prior and ABSLOPE prior

Adaptive Bayesian SLOPE (complete data)
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Decomposition: X = (Xobs, Xmis)

y

Xobs Xmisμ, Σ

θ γ

c

β

σ2

X

`comp = log p(y,X, γ, c; β, θ, σ2) + pen(β)
= log

{
p(X; µ,Σ) p(y | X; β, σ2) p(γ; θ) p(c)

}
+ pen(β)

Objective: Maximize `obs =
t

`comp dXmis dc dθ dγ.

Modeling with missingness
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• E step:
Qt = E(`comp) wrt p(Xmis, γ, c, θ | y,Xobs, β

t, σt, µt,Σt).
• Simulation: draw one sample (Xt

mis, γ
t, ct, θt) from

p(Xmis, γ, c, θ | y,Xobs, β
t−1, σt−1, µt−1,Σt−1);

[Gibbs sampling]
• Stochastic approximation: update function Q with

Qt = Qt−1 + ηt

(
`comp

∣∣∣
Xt

mis,γ
t,ct,θt

−Qt−1
)
.

• M step: βt, σt, µt,Σt = arg maxQt.
[Proximal gradient descent, Shrinkage of covariance]

Details of initialization, generating samples and optimization are in arXiv:1909.06631

Adapted SAEM algorithm

28
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Estimation of covariance matrix Σ in high-dimension:

• In some special case, Σ is known.

• If given sparseness⇒ graphical lasso

• But no additional knowledge of Σ⇒ shrinkage estimation.
Optimal linear shrinkage (Ledoit and Wolf, 2012):

Σ̂ = ρ1I + ρ2S, where ρ1, ρ2 = arg min
ρ1,ρ2

E‖Σ̂− Σ‖2.

⇒ shrink the empirical eigenvalues towards their mean;
ρ1 and ρ2 chosen by asymptotically uniformly minimum
quadratic risk.

Shrinkage of covariance matrix

29
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n = p = 100, no correlation and 10% missingness
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• FDR controlled at expected level 0.1.

• Power increases and estimation bias decreases if larger sparsity
or stronger signal.

Simulation study (200 rep. ⇒ average)
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with correlation
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• FDR controlled with small correlation.

• Existence of correlation increases the prediction accuracy.

Simulation study (200 rep. ⇒ average)
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• ABSLOPE

• SLOBE: simplified version (conditional expectation instead of
generating samples of latent variables)

• ncLASSO (Loh and Wainwright, 2012): LASSO with NA
⇒ Non-convex optimisation
requires to know bound of ‖β‖1 ⇒ difficult in practice

• Mean imputation followed by

• SLOPE with known σ
• adaptive LASSO (Zou, 2006)

In the SLOPE type methods, λ = BH sequence which controls the FDR
at level 0.1

Method comparison (few competitors)
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500×500 dataset, 10% missingness, with correlation
darker color = larger value.
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• ABSLOPE & SLOBE: FDR control (<0.1) when signal strength >1
• Others: sacrifice FDR to achieve good power

Method comparison (200 rep. ⇒ average)
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500×500 dataset, 10% missingness, with correlation
darker color = larger value.
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• ABSLOPE: good performance, especially with larger sparsity and
stronger signal strength.

Method comparison (200 rep. ⇒ average)
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Execution time (seconds) n = p = 100 n = p = 500
for one simulation min mean max min mean max
ABSLOPE 12.83 14.33 20.98 646.53 696.09 975.73
SLOBE 0.31 0.34 0.66 14.23 15.07 29.52
ncLASSO 16.38 20.89 51.35 91.90 100.71 171.00
MeanImp + SLOPE 0.01 0.02 0.09 0.24 0.28 0.53
MeanImp + LASSO 0.10 0.14 0.32 1.75 1.85 3.06

[Fast implementation: Parallel computing + Rcpp (C++)]

Computational cost
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TraumaBase: Measurements Predict−→ Platelet
Cross-validation: random splits to training and test sets × 10

● ●
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• Comparable to random forest

• Interpretable model selection and estimation results

More on the real data
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Main algorithm:

lambda = create_lambda_bhq(ncol(X),fdr=0.10)
list.res = ABSLOPE(X, y, lambda)

A fast and simplified algorithm (C++):

list.res.slobe = SLOBE(X, y, lambda)

Coefficient and support recovery:

list.res$beta
list.res$gamma

R package: ABSLOPE
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Contribution 3:

Controlled model selection with
non-parametric regression model

(preprint, 2020)



Similar setting (High-dimensional sparse regression) and aim (FDR
control) as ABSLOPE:

n i.i.d. samples (Xi1, Xi2, · · · , Xip, yi)ni=1

yi | (Xi1, . . . , Xip)
ind.∼ Py|X , i = 1, . . . , n

but:

• Conditional distribution Py|X not specified (non-parametric)

• Distribution of X is known (model-X)

Model-X assumption (complete data)
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Non-parametric model selection with knockoff (Candes et al., 2018)

1 Generate “fake” variables (without looking at y)

Covariate X Knockoff copies X̃

generate

• Correlation between X̃j and X̃k

= Correlation between Xj and Xk (j 6= k)

• Correlation between Xj and X̃k

= Correlation between Xj and Xk (j 6= k)

⇒ Knockoffs have same structure but all null.

Knockoff method (complete data)
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Non-parametric model selection with knockoff (Candes et al., 2018)

1 Generate “fake” variables (without looking at y)

2 Measure variable importance

Covariate X Knockoff copies X̃

generate

Knockoff copies X̃Covariate X

(Z1, Z2, . . . , Zp, Z̃1, Z̃2, . . . , Z̃p)

Response y

∼

LASSO

= ( |β1 | , |β2 | , . . . , |βp | , | β̃1 | , | β̃2 | , . . . , | β̃p | )

Variable importance• Null variable: Zj
d= Z̃j

• Important variable: Zj >> Z̃j

Knockoff method (complete data)
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Non-parametric model selection with knockoff (Candes et al., 2018)

1 Generate “fake” variables (without looking at y)

2 Measure variable importance

Covariate X Knockoff copies X̃

generate

Knockoff copies X̃Covariate X

(Z1, Z2, . . . , Zp, Z̃1, Z̃2, . . . , Z̃p)

Response y

∼

LASSO

= ( |β1 | , |β2 | , . . . , |βp | , | β̃1 | , | β̃2 | , . . . , | β̃p | )

Variable importance

3 Select variables more important than their knockoff copies:
• Large Wj = Zj − Z̃j
• Wj ≥ τ a threshold to control FDR at q:

τ = min
{
t > 0 : 1 + #{j : Wj ≤ −t}

#{j : Wj ≥ t}

}

Knockoff method (complete data)
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Single knockoff→ instability⇒Multiple knockoffs

 

Knockoff copies X̃(1)Covariate X

{W (1)
j }j=1,...,p

Response y

∼ LASSO

Variable 
importance

Multiple knockoffs (complete data)
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Single knockoff→ instability⇒Multiple knockoffs

 

X̃(B)

{W (B)
j }j=1,...,p∼ LASSO

Knockoff copies X̃(1)Covariate X

{W (1)
j }j=1,...,p

Response y

∼ LASSO

X̃(2)

{W (2)
j }j=1,...,p∼ LASSO

⋮ ⋮ ⋮ ⋮
Aggregation

Variable 
importance

Multiple knockoffs (complete data)

40



Contribution:
• Combine single knockoff with single imputation

Covariate X Knockoff copies X̃

generate

Completed X̂

Impute

missKnockoff: single imputation
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Contribution:
• Combine single knockoff with single imputation

Covariate X Knockoff copies X̃

generate

Knockoff copies X̃Response y

∼ LASSO

Completed X̂

Impute

Completed X̂

{Wj}j=1,2,...,p

Variable 

importance

missKnockoff: single imputation

41



Contributions:

• Multiple imputation⇒ single knockoff on each imputed dataset values

• Suggest new aggregation rules (inspired by multiple knockoffs)

+ take variability into account

missKnockoff: multiple imputation
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Step1: Bootstrap B times

Covariate X

Knockoff copies X̃(1)

generate

Completed X̂(1)

Bootstrap

Bootstrap sample X(1)

Estimate

Σ(1)

Impute

On each bootstrap sample, estimate the covariance (Schneider, 2001; Lounici et al., 2014):

Σ(b) =
(
δ−1 − δ−2) diag (Σn) + δ−2Σn ⇒ impute p(Xmis|Xobs)

δ: the proportion of observed entries
Σn: the linear shrinkage estimation on empirical covariance of initially
imputed dataset by 0.

missKnockoff: multiple imputation
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Step1: Bootstrap B times

Covariate X

Knockoff copies X̃(1)

generate

Completed X̂(1)

Bootstrap

Bootstrap sample X(1)

Estimate

Σ(1)

Impute

X̃(2)X̂(2)X(2)

Σ(2)

X̃(B)X̂(B)X(B)

Σ(2)

⋮ ⋮ ⋮ ⋮

missKnockoff: multiple imputation
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Step2: Measure variable importance

 

X̃(B)

{W (B)
j }j=1,...,p

∼ LASSO

Knockoff copies X̃(1)

{W (1)
j }j=1,...,p

Response y

∼ LASSO

X̃(2)

{W (2)
j }j=1,...,p∼ LASSO

⋮ ⋮
Aggregation

Variable 
importance

X̂(2)

X̂(B)

⋮ ⋮

Completed X̂(1)

missKnockoff: multiple imputation
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Step3: Aggregation by averaging the cases

 

Knockoff copies X̃(1)

{W (1)
j }j=1,...,p

Response y

∼ LASSO

X̃(2)

{W (2)
j }j=1,...,p∼ LASSO

Aggregation

Variable 
importance

X̂(2)

Completed X̂(1)

1 Estimate the knockoff threshold:

τ = min
{
t : 1

B

∑B

b=1

#
{
j:W (b)

j
≤−t
}

+1

#
{
j:W (b)

j
≥t
} ≤ q

}
.

2 Calculate the median of {W (b)
j } over b = 1, 2, · · · , B to obtain W̄j .

If W̄j > τ ⇒ Select j-th variable.

missKnockoff: multiple imputation
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Theorem (FDR control for single missKnockoff)

missKnockoff procedure with single imputation from p(Xmis|Xobs) controls FDR at level q.

Theorem (FDR estimation for multiple missKnockoff)

Consider the single missKnockoff procedure, which rejects H0j : βj = 0 if Wj > t, and let

FDR(t) = E

[
#{j ∈ H0 : Wj ≥ t}

#{j : Wj ≥ t}

]
.

Then for the multiple missKnockoffs procedure with variable importance statistics {W b
j }:

E

 1
B

B∑
b=1

#
{
j : W (b)

j ≤ −t
}

#
{
j : W (b)

j ≥ t
}


︸ ︷︷ ︸
F̂DRB(t)

≥ FDR(t) .

• F̂DRB(t) for missKnockoff with B bootstrap is an upwards biased estimator of
FDR (t), with variance which diminishes with B (for t > 0 and B > 1).

• It holds almost surely that limB→∞ F̂DRB(t) = E
[
F̂DR(t)|Xobs, y

]
,

the right side = the conditional expectation of estimated false discovery
proportion provided by the single missKnockoff procedure.

Theoretical result
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n = p = 500
Signal strength 1.3

√
2 log p (left) / strong 3

√
2 log p (right).
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• Comprehensive framework for dealing with missing values
from estimation to model selection for logistic regression model

• Methodology, algorithm, simulations
• R package misaem

• New methods for high-dimensional model selection with FDR
control (parametric/ non-parametric)

• Methodology, algorithm, theoretical results, simulations
• R package ABSLOPE

• Analysis of hospital dataset (TraumaBase)

• Improve health care (interpretability, transparency)
• Results presented at French Society of Anesthesia &

Intensive Care Medicine (SFAR) meeting
• TraumaBase mobile application under development

General conclusion
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Screenshots of TraumaBase application
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• Extension to deal with mixed incomplete covariates with both
continuous and categorical, ordinal and binary data (ongoing)

• General location model (Zhao and Udell, 2019)
• Gaussian copula (Zhao and Udell, 2019)

• Extension of ABSLOPE (ordered l1 penalty) in generalized linear
models

• Extension to another missing mechanism (MNAR)

• Testing unconditional independence (Candes et al., 2018) with
missing values (to improve the power for missKnockoff)

Perspectives
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Appendix 1:
Logistic regression with missing

covariates



Observed Fisher information matrix (FIM) wrt β

I(θ) = −∂
2`(θ;Xobs, y)
∂θ∂θT

.

Louis formula

I(θ) =− E
(
∂2`(θ;X, y)
∂θ∂θT

∣∣Xobs, y; θ
)

− E
(
∂`(θ;X, y)

∂θ

∂`(θ;X, y)T

∂θ

∣∣Xobs, y; θ
)

+ E
(
∂`(θ;X, y)

∂θ
|Xobs, y; θ

)
E
(
∂`(θ;X, y)

∂θ
|Xobs, y; θ

)T
.

Given the MH samples of unobserved data
(X(m)

i,mis, 1 ≤ i ≤ n, 1 ≤ m ≤M) , and the SAEM estimate θ̂
⇒ Estimate FIM by empirical means.

Variance estimation



Observed Fisher information matrix (FIM) wrt β

I(θ) = −∂
2`(θ;Xobs, y)
∂θ∂θT

.

Louis formula

I(θ) =− E
(
∂2`(θ;X, y)
∂θ∂θT

∣∣Xobs, y; θ
)

− E
(
∂`(θ;X, y)

∂θ

∂`(θ;X, y)T

∂θ

∣∣Xobs, y; θ
)

+ E
(
∂`(θ;X, y)

∂θ
|Xobs, y; θ

)
E
(
∂`(θ;X, y)
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⇒ Estimate FIM by empirical means.

Variance estimation



Step size : γk = (k − k1)−τ
k1 = 50 and τ = (0.6, 0.8, 1.0).
N = 1000, p = 5, percentage of missingness= 10%
4 repetitions of simulations and 500 iterations:

τ = 0.6 τ = 0.8 τ= 1.0

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

iteration

β 1

Figure: Convergence plot for β1. Each color represents one specified
simulation.

Simulation study: SAEM behavior



Table: Coverage (%) for n = 10 000, calculated over 1000 simulations.

parameter no NA CC mice SAEM

β0 95.2 94.4 95.2 94.9
β1 96.0 94.7 93.9 95.1
β2 95.5 94.6 94.0 94.3
β3 94.9 94.3 86.5 94.7
β4 94.6 94.2 96.2 95.4
β5 95.9 94.4 89.6 94.7
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Figure: Distribution of the estimated standard errors of β̂3 obtained
under MCAR; for each method, the red point corresponds to the
empirical standard deviation of β̂3 calculated over the 1000
simulations.

Method comparison: coverage



Table: For data with or without correlation, percentage of times that
different criterion selects the correct true model (C), overfit (O), i.e.
select more variables, and underfit (U) select less variables.

Non-Correlated Correlated
Criterion C O U C O U

AICobs 60 40 0 65 32 3
AICorig 73 27 0 75 20 5
AICcc 67 32 1 77 16 7
BICobs 92 3 5 94 2 4
BICorig 96 2 2 93 0 7
BICcc 79 1 20 91 0 9

Model selection results



Table: Comparison of execution time between no NA, MCEM, mice,
and SAEM with n = 1000 calculated over 1000 simulations.

Execution time (seconds) no NA MCEM mice SAEM

min 2.87× 10−3 492 0.64 9.96
mean 4.65× 10−3 773 0.70 13.50
max 43.50× 10−3 1077 0.76 16.79

Method comparison: execution time



Data preprocessing⇒ 6384 patients in the dataset.
Clinical experience⇒ 14 influential quantitative measurements
Based on penalized observed log-likelihood:
⇒ Observations resulting in a very small value of the log-likelihood.
⇒wrong records

Exploration of dataset



Random split : training set (70%) + test set (30%) ( repeated 15 times)
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Appendix 2:
ABSLOPE



In an orthogonal design:

ỹ = XT y = XTXβ +XT ε = β +XT ε ∼ N (β, σ2Ip).

Selecting model⇔multiple tests: H0,j : βj = 0. To control the FDR at
level q, (Benjamini and Hochberg, 1995)

1 sort |ỹ|(1) ≥ · · · ≥ |ỹ|(p)

2 corresponding hypotheses H(1), · · · , H(p)

3 rejects all H(i) for which

i ≤ iBH = max
{
i :
|ỹ|(i)
σ
≥ φ−1(1− qi)

}
, qi = iq

2p ,

For SLOPE, if we set λBH(j) = φ−1(1− qj), qj = jq
2p , then

FDR = E
[

#False rejections
#Rejections

]
≤ q p0

p
, p0 = # true null hypotheses

False discovery rate control

https://www.jstor.org/stable/2346101
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Proposition

Assume that a random variable z = (z1, z2, · · · , zp) has a SLOPE prior:

p(z | σ2;λ) ∝
p∏
j=1

exp
{
− 1
σ
λr(z,j)|zj |

}
,

and then define β = W−1z = ( z1
w1
, · · · , zp

wp
). Finally the prior of β

corresponds to ABSLOPE

p(β | γ, c, σ2;λ) ∝ c
∑p

j=1
I(γj=1)∏

j

exp
{
−wj |βj |

1
σ
λr(Wβ,j)

}
,

SLOPE -> ABSLOPE



Xmis ∼ p(Xmis | γ, c, y,Xobs, β, σ, θ, µ,Σ)
= p(Xmis | y,Xobs, β, σ, µ,Σ)
∝ p(y | Xobs, Xmis, β, σ) p(Xmis | Xobs, µ,Σ).

Proposition
LetM be the set containing indexes for missing covariates andO for the observed ones.
Assume that p(xobs, xmis; Σ, µ) ∼ N (µ,Σ) and let y = xβ + ε where ε ∼ N(0, σ2). For
all the indexes of the missing covariates i ∈M, we denote:

mi =
p∑
q=1

µisiq , ui =
∑
k∈O

xkobssik, r = y − xobsβobs, τi =
√
sii + β2

i /σ
2,

with sij elements of Σ−1 and βobs the observed elements of β.
Let µ̃ = (µ̃i)i∈M be the solution of the following system of linear equations:

rβi/σ
2 +mi − ui
τi

−
∑

j∈M,j 6=i

βiβj/σ
2 + sij

τiτj
µ̃j = µ̃i , for all i ∈M,

and let B be a matrix with elements: Bij =

{
βiβj/σ

2+sij

τiτj
, if i 6= j

1, if i = j
, then for

z = (zi)i∈M where zi = τix
i
mis we have

z | xobs, y; Σ, µ, β, σ2 ∼ N(µ̃, B−1) .

Details of Simulation step



When step-size ηt = 1⇔ Stochastic EM (SEM) Estimation⇔
maximizing `comp

∣∣∣
Xt

mis,γ
t,ct

Update β for an example:

βt = arg max
β

− 1
2(σt−1)2 ‖y −X

tβ‖2 − 1
σt−1

p∑
j=1

wtj |βj |λr(W tβ,j)

where Xt = (Xobs, X
t
mis).

⇔ Solution of SLOPE, given W t, Xt
mis and σt−1.

⇒ proximal gradient.

Stochastic Approximation step



SLOPE is a convex optimization problem of the form

min f(β) = g(β) + h(β)

g : smooth and convex h : convex but not smooth
At each iteration, compute a local approximation to g:

g(βt) + 〈∇g(βt), x− βt〉+ 1
2r‖x− β

t‖2,

where r is a step size. Then update βt+1

βt+1 = arg min
x

g(βt) + 〈∇g(βt), x− βt〉+ 1
2r‖x− β

t‖2 + h(x)

= arg min
x

1
2r‖(β

t − t∇g(βt))− x‖2 + h(x)

= proxt,h(βt − t∇g(βt))

The prox of l1 norm is given by entry-wise soft thresholding.

Basic Idea of proximal gradient
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Model selection results
1 0

1
True
Positive
(TP)

False
Negative
(FN)

0
False
Positive
(FP)

True
Negative
(TN)

• FDR = FN
FN+TN ;

• Power = TP
TP+FN ;

• Relative MSE = ‖β̂−β‖2
‖β‖2 .

Criterion



n = p = 100, with correlation and strong signal

Power FDR

Bias of β Prediction error

Figure: Mean of power (a), FDR (b), bias of the estimate for β (c) and
prediction error (d), as function of length of true signal over the 200
simulations. Results for n = p = 100, with correlation and strong
signal.

Effect of missing percentage



Appendix 3:
missKnockoff



Contributions:
• Combine multiple imputation⇒ single knockoff on each imputed dataset values
• Suggest new aggregation rules (averaging the cases)

Xcomp

Xmis

Xobs

Σ̂1 → X̂1
mis

Σ̂2 → X̂2
mis

...

Σ̂M → X̂M
mis

estimate covariance
X̃1

X̃2

...

X̃M

knockoff copies

LASSO

y

(Z1, Z̃1)

(Z2, Z̃2)

...

(ZM , Z̃M )

fitted coefficients

W1

W2

...

WM

median over imputation number

W̄1

W̄2

...

W̄p

τ

FDR threshold

aggregation & rejection

≤ τ?

≤ τ?

≤ τ?

NA

merge

impute

Z1 − Z̃1

Z2 − Z̃2

ZM − Z̃M

missKnockoff: handling missing values



Input: X = (Xmis, Xobs) (rows can have different pattern of missing values);
for b = 1, 2, · · · , B do

(Bootstrap: reflect sampling variability in covariance matrix estimate)

1 BootstrapX with missing values.

2 On bootstrap samples, estimate the covariance (Schneider, 2001; Lounici et al., 2014):

Σ̂b =
(
δ̂
−1 − δ̂−2

)
diag
(

Σ̂n

)
+ δ̂
−2Σ̂n ,

with δ̂ the proportion of observed entries and Σ̂n the linear shrinkage estimation on empirical
covariance of initially imputed dataset by 0.

(Generate multiple knockoff and compute importance measures)

1 With Σ̂b , impute missing values X̂b
mis from p(Xmis | Xobs) and generate knockoff copies X̃b

from p
(
X̃ | X =

(
Xobs, X̂

b
mis

))
.

2 On the set (y, X̂(b), X̃(b)), use LASSO to obtain fitted coefficient vectors and statistics:

Z
(b)
j

=
∣∣β̂(b)

j

∣∣ , Z̃
(b)
j

=
∣∣β̂(b)

j+p

∣∣ .
3 Calculate variable importanceW (b)

j
= Z

(b)
j
− Z̃(b)

j
, j = 1, 2, · · · , p.

(Aggregation by averaging the cases)

1 Estimate the knockoff threshold: τ = min

{
t : 1

B

∑B

b=1

#
{

j:Wbj≤−t

}
+c

#
{

j:Wbj≥t

}
∨1
≤ q

}
.

2 Calculate the median of {Wmj} over b = 1, 2, · · · , B to obtain W̄j .

if W̄j ≤ τ then
Reject j-th variable.

Output: Indexes for model selection {j : W̄j > τ}.

missKnockoff: handling missing values



Theorem (FDR control for single missKnockoff)

missKnockoff procedure with single imputation from p(Xmis|Xobs) controls
FDR at the level q.

Sketch of proof:

If we generate values for missing covariates with:
X̂mis ∼ p(Xmis | Xobs) ,
⇒ (Xobs, X̂mis)

d= X .

⇒ (Xobs, X̂mis, X̃)swap(S)
d= (X, X̃) .

⇒ Design matrix with imputed missing values satisfies the
exchangeability condition.
⇒ it satisfies the definition of model-X knockoff.
⇒ FDR control.

Theoritical result
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