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TraumaBase project: decision support for patients

* 20000 trauma patients + 250 measurements variables

Center  Accident Age Sex Lactactes BP Shock Platelet

Beaujon fall 54 m NA 180 yes 292000
Pitie gun 26 m NA 131 no 323000
Beaujon moto 63 m 3.9 NA yes 318000
Pitie moto 30 f NA 107 no 211000
m 2.5 118 no 184000

HEGP knife 16

Management scheme of a traumatized patient.



TraumaBase project: decision support for patients

° 20000 trauma patients + 250 measurements variables

Center  Accident Age Sex Lactactes BP Shock Platelet

Beaujon fall 54 m NA 180 yes 292000
Pitie gun 26 m NA 131 no 323000
Beaujon moto 63 m 3.9 NA yes 318000
Pitie moto 30 f NA 107 no 211000
m 2.5 118 no 184000

HEGP knife 16

Objective: help the clinicians make decisions

i Modelling | Logistic regression | Hemorrhagic
Pre-hospital Interpreting shock
Features ——»| .
with Model Selection Linear regression Platelet
L |_Linear regression
missing values Prediction
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List-wise deletion ?

“One of the ironies of Big Data is that missing data play an ever more
significant role.” (Samworth, 2019)

Example

A n x p dataset, each entry has a probability 1% to be missing
independently.



E List-wise deletion ?

“One of the ironies of Big Data is that missing data play an ever more
significant role.” (Samworth, 2019)

Example
A n x p dataset, each entry has a probability 1% to be missing
independently.
o p =5 95% rows kept
deletion
°© p =300 =% 50 rows kept
deletion

= List-wise deletion impossible



a Literature on missing values

¢ R-miss-tastic: resource website for managing missing data,
150 packages (most based on imputation)

® Books: Schafer (2002), Little & Rubin (2019); Kim & Shao (2013);
Carpenter & Kenward (2013); Stef van Buuren (2018)


https://stefvanbuuren.name/fimd/

E Literature on missing values

¢ R-miss-tastic: resource website for managing missing data,
150 packages (most based on imputation)

® Books: Schafer (2002), Little & Rubin (2019); Kim & Shao (2013);
Carpenter & Kenward (2013); Stef van Buuren (2018)

Single imputation

Example: (z;,y:) ~ N (p, 2) i.i.d., 70% missing entries on y randomly
Aim: Estimate parameters & their variance

Mean imputation Regression imputation

X X
fy =0 0.01 0.01
oy =1 05 0.72
p=06 0.30 078

= have bias & fail to evaluate the uncertainty caused by NA 5


https://stefvanbuuren.name/fimd/

Recommended method 1: multiple imputation

Example:

X1 Xo X3 Y
NA 20 10 1
-6 45 NA 1
0 NA 30 0
NA 32 35 1
1 63 40 1
-2 NA 12 0

= logistic regression with parameter 3



Recommended method 1: multiple imputation

X1 Xo X3
NA 20 10

% 45 NA
Example: 0 NA 30

NA 32 3
1 63 40
2 NA 12

= logistic regression with parameter 3

o= o R

@ Generate M plausible values for each missing entry

X1 X2 X3 Y X1 Xa X3 Y X1 X2 X3 Y
3 20 10 1 -7 20 10 1 7 20 10 1
-6 45 6 1 -6 45 9 1 -6 45 12 1
0 4 30 0 0 12 30 0 0 -5 30 0
-4 32 35 1 13 32 35 1 2 32 35 1
1 63 40 1 1 63 40 1 1 63 40 1
-2 15 12 0 -2 10 12 0 -2 20 12 0

@ Perform the analysis on each imputed data set: B, Var (Bm)

@ Combine the results (Rubin’s rules):

1 - 1 o — 1+ 1 X 2
B=M;ﬂm V=M2Var(6m)+M_MlZ(6m—ﬂ)




Recommended method 1: multiple imputation

NA 32 35
1 63 40
-2 NA 12

X1 Xo X3 Y
NA 20 10 1
6 45 NA |1 o ) )
Example: 0 NA 30 |0 = logistic regression with parameter j3
1
1
0

@ Generate M plausible values for each missing entry

X1 X2 X3 Y X1 Xa X3 Y X1 X2 X3 Y
3 20 10 1 -7 20 10 1 7 20 10 1
-6 45 6 1 -6 45 9 1 -6 45 12 1
0 4 30 0 0 12 30 0 0 -5 30 0
-4 32 35 1 13 32 35 1 2 32 35 1
1 63 40 1 1 63 40 1 1 63 40 1
-2 15 12 0 -2 10 12 0 -2 20 12 0

@ Perform the analysis on each imputed data set: ﬁm, Var (Bm)

@ Combine the results (Rubin’s rules):

1 - 1 o — 1+ 1 X 2
ﬂzﬁgﬂm V=M2Var(6m)+M_MlZ(6m—ﬂ)

-+ Variability of missing values is taken into account
— Aggregating different models from multiple imputed data is complex



Recommended method 2: EM algorithm

Modify the estimation process to deal with missing values.
Maximum observed likelihood: EM algorithm to obtain point estimates +
Supplemented EM (Meng & Rubin, 1991) for their variability

log P(x;0) = observed log-likelihood
= objective function

Q(6 | 6rt+1)

Qe | 6wy = expectation of the complete log-
likelihood
= function that lower-bounds the
objective function



Recommended method 2: EM algorithm

Modify the estimation process to deal with missing values.
Maximum observed likelihood: EM algorithm to obtain point estimates +
Supplemented EM (Meng & Rubin, 1991) for their variability

log P(x;0) = observed log-likelihood
= objective function

QO | 6e+0)

Qe | 6wy = expectation of the complete log-
likelihood

= function that lower-bounds the
objective function

-+ Perfectly dedicated toward the problem (ML estimates)
— One specific algorithm for each statistical method
— Not many implementations even for simple models (e.g. logistic regression)

— Not a complete methodology 7



Objectives and contributions

¢ Complete methodologies for estimation, model selection and
prediction (few competitors) with missing data

¢ Classical setting (n > p): logistic regression (SAEM)
* High dimension (p > n): parametric & non-parametric
regression (FDR control)

° Software packages

* Implementation of R packages
* Numerical experiments

* Application to the medical dataset—TraumaBase

* Predict the risk of hemorrhagic shock
* Predict platelet levels


Wei Jiang

Wei Jiang
>


Contribution 1:

Logistic regression with missing
covariates

(Jiang , Josse, Lavielle, TraumaBase, 2020)

Computational Statistics & Data Analysis

Volume 145, May 2020, 106907

Logistic regression with missing covariates
—Parameter estimation, model selection
and prediction within a joint-modeling
framework

Wei Jiang * & &, Julie Josse ?, Marc Lavielle 2, TraumaBase Group b



Logistic regression model

X = (x;j) an x p matrix of quantitative covariates
y = (y;) an n-vector of binary responses {0, 1}

Logistic regression model

exp(Bo + -5, Bjwij)

PO = U D) = T o + 7 )

Covariates

Xi i.?d.Np(M’ %)

Log-likelihood for complete-data with the set of parameters
0= (1%, p)

n

00: X,9) = Y (1og(p(il X 8)) + log(p(Xi; 1,2)) ).
i=1

10



a Missing data mechanisms

Decomposition: X = (Xobs, Xmis)-
1, if X;; is observed;

Pattern of missingness: R with R;; = i
0, otherwise.

11



Missing data mechanisms

Decomposition: X = (Xobs, Xmis)-

1, if X;; is observed;
Pattern of missingness: R with R;; = ¢ v
0, otherwise.

Missing completely at random (MCAR)
p(R| X)=p(R) eg Datalost when merging databases

Missing at random (MAR)

P(R| X)=p(R| Xobs) €4 not collected at larger
probability in traffic accident.

Missing not at random (MNAR)

P(R| X) =p(R | Xobs, Xmis) €8 not collected at
larger probability when its value < 90 mmHg.

11



Missing data mechanisms

Decomposition: X = (Xobs, Xmis)-

1, if X;;isob d;
Pattern of missingness: R with R;; = ¢ 1 i 15 ObSEIve
0, otherwise.

Missing completely at random (MCAR)
p(R| X)=p(R) eg Datalost when merging databases

Missing at random (MAR)

P(R| X)=p(R| Xons) e not collected at larger
probability in traffic accident.

Missing not at random (MNAR)

P(R| X) =p(R | Xobs, Xmis) €8 not collected at
larger probability when its value < 90 mmHg.

Assumption: Missing data are Missing at Random

= Ignore modeling missing mechanism 1
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EM algorithm with missing data

Observed-data likelihood
Aim: argmax £(0; Xobs, y) = [ UOTETY) X is-
EM:
¢ E-step: Evaluate the quantity
Qk(e) = E[e(av Xa y)lXObsa Y; ek—l]

:/Z(G;Xay)p(Xmis|Xobsay;ek—l)deish

* M-step: 0, = arg max, Qx(0).

12


https://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10474930
Wei Jiang

Wei Jiang

Wei Jiang

Wei Jiang
Complete-data likelihood

Wei Jiang

Wei Jiang

Wei Jiang
Observed-data likelihood

Wei Jiang


EM algorithm with missing data

Aim: argmaxg £(0; Xobs, y) = [£(0; X, y)d X mis-
EM:

¢ E-step: Evaluate the quantity
Qr(0) = E[£(0; X, y)| Xobs, 3 Or—1]
= [0 X )P i X 301X
* M-step: 0, = arg max,y Qx(6).
Unfeasible computation of expectation!
MCEM (Wei & Tanner 1990): Generate a large set of samples of

missing data from p(Xmis| Xobs, ¥; Ox—1) and replaces the expectation
by an empirical mean.

12
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EM algorithm with missing data

Aim: argmaxg £(0; Xobs, y) = [£(0; X, y)d X mis-
EM:

¢ E-step: Evaluate the quantity
Qk(g) = E[£(97 X7 y)‘XobSa Y 0}671]
= /6(97 Xa y)p(Xmis|Xobsa Y3 ekfl)deis'

* M-step: 0, = arg max,y Qx(6).
Unfeasible computation of expectation!

MCEM (Wei & Tanner 1990): Generate a large set of samples of
missing data from p(Xmis| Xobs, ¥; Ox—1) and replaces the expectation
by an empirical mean.

Require a huge number of samples to converge!

12


https://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10474930

Stochastic Approximation EM

(book, Lavielle 2014) Starting from an initial guess 6y, the kth
iteration consists of three steps:

* Simulation: Fori =1,2,---  n, draw one sample Xz( H)HS from

P(Xi,mis|Xi,obs, Yis 0]@71).

¢ Stochastic approximation: Update the function @

Qu(0) = Qu-1(0) + 7 (€06 Xonm, X\ ) = Qur (6))

where () is a decreasing sequence of positive numbers.

* Maximization: 6, = arg maxy Q ().

13


https://hal.archives-ouvertes.fr/hal-01122873
https://projecteuclid.org/euclid.bj/1281099879

Stochastic Approximation EM

(book, Lavielle 2014) Starting from an initial guess 6y, the kth
iteration consists of three steps:

* Simulation: Fori =1,2,---  n, draw one sample Xz( H)HS from

P(Xi,mis|Xi,obs, Yis 0]@71).

¢ Stochastic approximation: Update the function @

Qu(0) = Qu-1(0) + 7 (€06 Xonm, X\ ) = Qur (6))

where () is a decreasing sequence of positive numbers.
* Maximization: 6, = arg maxy Q ().

Convergence: (Allassonniere et al. 2010)
The choice of the sequence () is important for ensuring the almost
sure convergence of SAEM to a MLE.

13


https://hal.archives-ouvertes.fr/hal-01122873
https://projecteuclid.org/euclid.bj/1281099879

a Metropolis-Hastings algorithm

Target distribution
fi(Xs,mis) = P(Xs,mis| Xi,0bs, Yi; 0)
0.8 p(y7,|X7,7 ﬂ) p(/\'LIlﬂv\“/\’nub\: Hy Z)

14



Metropolis-Hastings algorithm

Target distribution
fi(Ximis) = P(Xi,mis| Xi obs, ¥i3 0)
X p(y7«|X7«; ﬁ) P(/\'mmm 1\’14.1;\: Hy Z).
Proposal distribution g; (X;,mis) = (X mis| X onsi 12, 2)
X, mis| Xs,0bs ~ Np(pi, L)

—1
Hi = [i,mis + Ei,mis,obszi,obs,obs(Xi,obs - :U’i»ObS))

-1
2 = Xi,mis,mis — Zi,mis,obszi,,;,bs70b52i,obs,mis7

14



Metropolis-Hastings algorithm

Target distribution
fi(Xs,mis) = P(Xs,mis| Xi,0bs, Yi; 0)
o (Y| X3 B) p( X4 mis| Xiobss 1, 20).
Proposal distribution g; (X mis) = p( X7 mis| X obe; 1. 2)
X mis | Xi,obs ~ Np iy Xi)

—1
i = i mis + E'L’,mis,obszi,obs,obs(‘XV’L‘vaS - :U’i»ObS))
-1
Ei = E'L,mis,mis - Ei,mis,obsziY,;,bs,obszi,obs,mis7
Metropolis:
O =® ~ gi(@ims ulo, 1
Zim ™ gz(wl,mzs)/ u ~ [ ) ]

Q- £ /g0
T REE /e

® Ifu <7, accept zz(:fl)
Only need a few steps of Markov chains in each iteration of SAEM.

14



Metropolis-Hastings algorithm

Target distribution
fi(Xs,mis) = P(Xs,mis| Xi,0bs, Yi; 0)
X p(y7,|X7,; ﬂ) p(/\’umi\‘ ‘\'hubx: Ly >4)
Proposal distribution g; (X mis) = p( X7 mie| i ons: 11, 2)

Xi,mis| Xi,0bs ~ Np(pi, 3i)
-1
Hi = fi,mis + Eivmisvc’bszi,obs,obs(‘XV’L‘YObS - ,U/i,obs),
-1
Y= Ei,mis,mis — EivmistbSEi,obs,obszi,obs,mis7
Metropolis:
k
0 zz('m? ~ gi (wi,mis)/ u ~ U[O, 1]
®r— Fi(z8)) /i (20
r=m (k)
Fi(z, 0 D/9i(z 0

(k)

im

© Ifu <, accept z
Only need a few steps of Markov chains in each iteration of SAEM.

Variance estimation:

Given the MH samples of unobserved data, and the SAEM estimate
= Estimate observed Fisher information by empirical means. 14



Model selection: criterion BIC

With pg the number of estimated parameters in a given model M,
model selection criterion (penalized likelihood) :

BIC(M) = —2£(0p4; Xobs, y) + log(n)d(M),

How to estimate observed likelihood ?

15



Model selection: criterion BIC

With pg the number of estimated parameters in a given model M,
model selection criterion (penalized likelihood) :

BIC(M) = —2£(0p4; Xobs, y) + log(n)d(M),

How to estimate observed likelihood ?

P(Yis Xiobs; 0) = /P(ym Xi,0bs| Xi,mis; 0)P(Xi,mis; 0)dX; mis
P(Xi,mis; 0)
9i(Xi,mis)

P(Xi,mis; 9))
9i (X mis)
Sample from g; (the proposal distribution in SAEM)
= Empirical mean.

= /p(yi,Xi,oblei,mis;e) gi(Xi,mis)dXi,mis

= Egi <P(yi, Xi,obs|Xi,mis; 0)

15
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Prediction: missing values in test set

Xtrain Ytrain Xtcst
7 ? Al
? ?
? ?
77 ? ?
? ?
xfji)s, xffi)s, wfnﬂi) ~ D (Zmis | Tobs) ll
N
7
7
77
7
_ (m) . L
pm(y) =p (yla:obs, Ty ) P1 p2 pM

M

§ = argmax p (y|@obs) = arg max Z Pm(Y)
! om= 16



Method comparison: estimates & coverage

x:p=>5,n=10000;y € {0,1}
percentage of missingness = 10%
1000 replicates

Figure: Estimation bias of f.

I n = 10000

no NA cc mice SAEM

Table: Coverage of confidence

interval.

noNA CC mice SAEM
Bo 95.2 94.4 95.2 94.9
51 96.0 94.7 93.9 95.1
B2 95.5 946 94.0 94.3
B3 94.9 94.3 86.5 94.7
Ba 94.6 94.2 96.2 95.4
Bs 95.9 94.4 89.6 94.7

17



Method comparison: estimates & coverage

x:p=>5,n=10000;y € {0,1}
percentage of missingness = 10%
1000 replicates

Figure: Estimation bias of f.

I n = 10000

no NA cc mice SAEM

Table: Coverage of confidence

interval.

noNA CC mice SAEM
Bo 95.2 94.4 95.2 94.9
51 96.0 94.7 93.9 95.1
B2 95.5 946 94.0 94.3
B3 949 943 865 94.7
Ba 94.6 94.2 96.2 95.4
Bs 95.9 94.4 89.6 94.7

Extended simulations:

* Robustness

(model-misspecification)

° Percentage of missingness

* Separability of classes

17



Application on TraumaBase

Variables

Age = 6384 patients
Weight i i
) = 14 continuous variables
Height
BMI
Glasgow

Motor Glasgow Hemorrhagic

shock

Pulse Pressure min

| Logistic regression with missing values m
Pulse P t
ulse Pressure a P(y =l | X: ﬂ) 2

arrival

Heart Rate max L Xl --=- ]
Heart Rate at arrival / +
Hb Hemocue

SpO,
Volume Expander
colloids
Volume Expander
crystalloids.

18



Motor Glasgow
Pulse Pressure min

Pulse Pressure at
arrival

Heart Rate max

Hb Hemocue

Volume Expander
colloids
Volume Expander
crystalloids.

Effect

4

DNCEENIDN [« - » effects

0.011 (0.0033)

¢ A low Glasgow score means one
makes no motor response, often in
the case of hemorrhagic shock.

-0.16 (0.036) Hemorrhagic

shock

-0.025 (0.0050)

-0.021 (0.0056) P(y =1 | X; ﬁ) ?

0.026 (0.0025)

« + » effects
-0.23 (0.031)

¢ Older people tend to have a larger
0.0019 (0.00021)  pogsibility to suffer from
0.00090 (0.00010)  hemorrhagic shock.

18



a Predictive performance

Random split : training set (70%) + test set (30%) ( repeated 15 times)

5.51

o
o

>
v

Validation error

-
]
1

35 | | |

False Negative costs 10 times more than False Positive = Threshold 19



R package: misaem (Available in CRAN)

misaem: Linear Regression and Logistic Regression with Missing
Covariates

Estimate parameters of linear regression and logistic regression with missing covariates with missing
data, perform model selection and prediction, using EM-type algorithms.

Version: 100

CRAN Depends: R (2340)

Mirrors

Parameter estimation:

miss.glist = miss.glm(y~., data = df, maxruns = 500)
summary(miss.glist)

20



R package: misaem (Available in CRAN)

misaem: Linear Regression and Logistic Regression with Missing
Covariates

Estimate parameters of linear regression and logistic regression with missing covariates with missing
data, perform model selection and prediction, using EM-type algorithms.

Version: 100

CRAN Depends: R (2340)

Mirrors

Parameter estimation:

miss.glist = miss.glm(y~., data = df, maxruns = 500)
summary(miss.glist)

Model selection with BIC:

miss.model = miss.glm.model.select(y, X)
print(miss.model)

20



R package: misaem (Available in CRAN)

misaem: Linear Regression and Logistic Regression with Missing
Covariates

Estimate parameters of linear regression and logistic regression with missing covariates with missing
data, perform model selection and prediction, using EM-type algorithms.

Version: 100

CRAN Depends: R (2340)

Mirrors

Parameter estimation:

miss.glist = miss.glm(y~., data = df, maxruns = 500)
summary(miss.glist)

Model selection with BIC:

miss.model = miss.glm.model.select(y, X)
print(miss.model)

Prediction on (incomplete) test set:

pr.saem <- predict(miss.model, X.test)

20



R package: misaem (Available in CRAN)

misaem: Linear Regression and Logistic Regression with Missing
Covariates

Estimate parameters of linear regression and logistic regression with missing covariates with missing
data, perform model selection and prediction, using EM-type algorithms.

Version: 100

CRAN .
Mirrors Depends: R (=340)

Parameter estimation:

miss.glist = miss.glm(y~., data = df, maxruns = 500)
summary(miss.glist)

Model selection with BIC:

miss.model = miss.glm.model.select(y, X)
print(miss.model)

Prediction on (incomplete) test set:
pr.saem <- predict(miss.model, X.test)
Also provide solutions for linear regression with missing values:

miss.list = miss.lm(y~., data = df) 20



Contribution 2:

Variable selection for high-dimensional
incomplete data

(Jiang, Bogdan, Josse, Miasojedow, Rockova, 2019)

arX \Y; ‘%‘5’ Cornell University

Statistics > Methodology

arXiv:1909.06631 (stat)

[Submitted on 14 Sep 2019 (v1), last revised 6 Nov 2019 (this version, v2)]

Adaptive Bayesian SLOPE -- High-dimensional
Model Selection with Missing Values

Wei Jiang, Malgorzata Bogdan, Julie Josse, Blazej Miasojedow, Veronika Rockova, TraumaBase Group



®
= Model selection in high-dimension

fa

Linear regression model: y = X/ +¢,
yeR™ X eR™P, e~ N(0,0%I,)

22



Model selection in high-dimension

Linear regression model: y = X/ +¢,
yeR™ X eR™P, e~ N(0,0%I,)
Assumptions:

¢ high-dimension: p large (including p > n)

° [issparse with k < n nonzero coefficients

-IIIIIII.II

o
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Model selection in high-dimension

Linear regression model: y = X/ +¢,
yeR™ X eR™P, e~ N(0,0%I,)
Assumptions:
¢ high-dimension: p large (including p > n)

° [issparse with k < n nonzero coefficients

Aims:
* Model selection with FDR control
° Parameter estimation with less bias

° Managing missing values 22



[ penalization methods (complete data)

* LASSO (Tibshirani, 1996) .
Brasso = argmin §||y — XB|1>+ A8,
BERP

detects important variables with high probability but includes
many false positives.

23


https://www.jstor.org/stable/2346178
https://projecteuclid.org/euclid.aoas/1446488733

[ penalization methods (complete data)

* LASSO (Tibshirani, 1996) .
Brasso = argmin §||y — XB|1>+ A8,
BERP

detects important variables with high probability but includes
many false positives.

* SLOPE (Bogdan et al., 2015) penalizes larger coefficients more

strmgently
BSLOPE:argmln—||y X,8||2+O'ZA |,8|(]),
Jj=1
where Ay > Ay > -+ > A\, > 0and |B]1) > |Bl2) = = |B]p)-

23
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[ penalization methods (complete data)

* LASSO (Tibshirani, 1996) .
Brasso = argmin §||y — XB|1>+ A8,
BERP

detects important variables with high probability but includes
many false positives.

* SLOPE (Bogdan et al., 2015) penalizes larger coefficients more

strmgently
BSLOPE:argmln—||y X,8||2+O'ZA |,8|(]),
Jj=1
where Ay > Ay > -+ > A\, > 0and |B]1) > |Bl2) = = |B]p)-

To control False Discovery Rate (FDR) at level ¢:
Mpu(j)=¢"'(1~q;), ¢ =4, X'X=1I @ then

FDR—E #False re]ectlons}

#Rejections

23
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Bayesian SLOPE (complete data)

Problem: )\ for SLOPE leading to FDR control are typically large.
SLOPE often returns an inconsistent estimation.

= improve?

24



Bayesian SLOPE (complete data)

Problem: )\ for SLOPE leading to FDR control are typically large.
SLOPE often returns an inconsistent estimation.

= improve?

SLOPE estimate = MAP of a Bayesian regression with SLOPE prior.
Bsropr = argmaxp(y | X, 5,0%A) o p(y | X, B)p(8 ] 0% 2)

where the SLOPE prior:

2 1
o3 1% )  [Texw (- 216l )

j=1

24



Adaptive Bayesian SLOPE (complete data)

We propose an adaptive version of Bayesian SLOPE (ABSLOPE),
with the prior for 3 as

P I(y,=1) 1
pP(B|7,c,0%A) x (e H exp {—“‘/Iﬂjlg/\r(nﬂ,j)} ;
J

Interpretation of the model:
° B; is large enough = true signal; 0 = noise.

* 7; € {0,1} signal indicator. ;|6 ~ Bernoulli(f) and 6 the
sparsity.

* ¢ €[0,1]: the inverse of average signal magnitude.

* W = diag(wy,wy, - ,w,) and its diagonal element:

c, v=1

wj:CWH'(l—%‘):{l V=0
5 § =

25



fa

Adaptive Bayesian SLOPE (complete data)

Advantage of introducing W:

° whenv; =0, w; =1, i.e, the null variables are treated with the
regular SLOPE penalty

® when~; =1, w; = ¢ < 1,i.e, smaller penalty A,y g j for true
predictors than the regular SLOPE one

Prior
Prior

§
— ABSLOPE
T — ABSLOPE & SLOPE T
— stope

Null 8 Non-null 5

Figure: comparison of SLOPE prior and ABSLOPE prior o



s —{ () (5
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Decomposition: X = (Xops, Xmis)

OO
o

o () ()

X

CLeomp =1og p(y, X, 7, ¢; B,0,0%) + pen(B)
=log {p(X; 1n,X) p(y | X; B,0%) p(v; 0) p(c)} + pen(B)
Objective: Maximize lobs = [{] Leomp dXmis de db dry.
27



Adapted SAEM algorithm

* E step:
Q" = E(leomp) wrt p(Xmis,7,¢,0 | y, Xobs, B, 0%, p*, B).
* Simulation: draw one sample (X! ;.,~", ¢!, 6") from

P(Xmis, v, C, 6 | Y, Xobs, /Btfl, O.tfl’ ,Ut717 Etil);
[Gibbs sampling]
* Stochastic approximation: update function Q with

_ Qt—l
Xl ervtict 0t

* Mstep: B, ot, ut, B = arg max Q.
[Proximal gradient descent, Shrinkage of covariance]

Qt = Qt_l + M <€comp

Details of initialization, generating samples and optimization are in arXiv:1909.06631
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https://arxiv.org/abs/1909.06631

Shrinkage of covariance matrix

Estimation of covariance matrix ¥ in high-dimension:
¢ In some special case, ¥ is known.
¢ If given sparseness = graphical lasso

* But no additional knowledge of ¥ = shrinkage estimation.
Optimal linear shrinkage (Ledoit and Wolf, 2012):

3= pil + paS, where py, py = argmin E[|S — ¥||2.
P1,p2

= shrink the empirical eigenvalues towards their mean;
p1 and py chosen by asymptotically uniformly minimum
quadratic risk.
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https://projecteuclid.org/euclid.aos/1342625460

Simulation study (200 rep. = average)

n = p = 100, no correlation and 10% missingness

oo — ol T
1>
~—
\\' 075+ o7
—~ 5 | signal strength
8 - I3 5 - -
Bo= ~ Bl - -
. Zomy ;
ul H o
025 Lt
o] ¢ Y 050 St | e
: o s 3 s W i 2 b f % »
Number of relevant features. Number of relevant features 1 - sparsity
Power FDR Prediction error

* FDR controlled at expected level 0.1.

* Power increases and estimation bias decreases if larger sparsity
or stronger signal.
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Simulation study (200 rep. = average)

with correlation

[ 5
Bow Soo
B
25 0.2 —
- —_—
| ——————— 000
10 15 20 5 0 15 20 B 10 20
‘Number of relevant features Number of relevant features Number of relevant features
Power FDR Prediction error

FDR controlled with small correlation.

Existence of correlation increases the prediction accuracy.



Method comparison (few competitors)

° ABSLOPE

* SLOBE: simplified version (conditional expectation instead of
generating samples of latent variables)

* ncLASSO (Loh and Wainwright, 2012): LASSO with NA
= Non-convex optimisation
requires to know bound of ||3||; = difficult in practice

* Mean imputation followed by

* SLOPE with known o
* adaptive LASSO (Zou, 2006)

In the SLOPE type methods, A = BH sequence which controls the FDR
atlevel 0.1
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https://projecteuclid.org/euclid.aos/1346850068
https://www.tandfonline.com/doi/abs/10.1198/016214506000000735

Method comparison (200 rep. = average)

500x500 dataset, 10% missingness, with correlation
darker color = larger value.

Fd0Ts8Y
3donsay.

-—

FDR< 0.1

Power>0.8 2

8015
38018

ossvu
o
<]
El

e
SdoTSrdwIEan

signal strength

OSSvIeREdwIEaN
OSSVTepEduIUESN

2
number of relevant feautures

Power FDR

¢ ABSLOPE & SLOBE: FDR control (<0.1) when signal strength >1
® QOthers: sacrifice FDR to achieve good power 32
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Method comparison (200 rep. = average)

500x500 dataset, 10% missingness, with correlation
darker color = larger value.

3 3
1 g
5 5
&l b}

bias_beta

B
38018

LI

)

signal strength
signal strength

=

e H
Lk b ame oy
RN R 3

SdoTSrdwEan

T

) 3 2

% El % E]
number of relevant feautures number of relevant feautures.

Bias of 3 Prediction error

¢ ABSLOPE: good performance, especially with larger sparsity and
stronger signal strength. 33



Computational cost

Execution time (seconds) n =p =100 n =p = 500

for one simulation min mean max min mean max
ABSLOPE 12.83 1433 2098 | 646.53 696.09 975.73
SLOBE 0.31 0.34 0.66 14.23 15.07 29.52
ncLASSO 16.38 20.89 5135 | 91.90 100.71 171.00
MeanImp + SLOPE 0.01 0.02 0.09 0.24 0.28 0.53
MeanImp + LASSO 0.10 0.14 0.32 1.75 1.85 3.06

[Fast implementation: Parallel computing + Repp (C++)]
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o More on the real data

Predict
TraumaBase: Measurements —— Platelet

Cross-validation: random splits to training and test sets x 10

0.245

-
I

12 error of prediction

0.235
1

0.230

T T T T T T
RF ABSLOPE adalLASSO BIC SSL LASSO

¢ Comparable to random forest

° Interpretable model selection and estimation results
35



R package: AB

ABSLOPE

Languages
R Package for "Adaptive Bayesian SLOPE --- High-dimensional Model ® R90.2%
Selection with Missing Values" ® C++98%

(2019, Bogdan M., Jiang W., Josse J., Miasojedow B., Rockova V.)

Main algorithm:

lambda = create_lambda_ bhqg(ncol(X),fdr=0.10)
list.res = ABSLOPE(X, y, lambda)
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R package: ABSLOPE

ABSLOPE

Languages
R Package for "Adaptive Bayesian SLOPE --- High-dimensional Model ® R90.2%
Selection with Missing Values" ® C++98%

(2019, Bogdan M., Jiang W., Josse J., Miasojedow B., Rockova V.)

Main algorithm:

lambda = create_lambda_ bhqg(ncol(X),fdr=0.10)
list.res = ABSLOPE(X, y, lambda)

A fast and simplified algorithm (C++):

list.res.slobe = SLOBE(X, y, lambda)
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R package: ABSLOPE

ABSLOPE

Languages
R Package for "Adaptive Bayesian SLOPE --- High-dimensional Model ® R90.2%
Selection with Missing Values" ® C++98%

(2019, Bogdan M., Jiang W., Josse J., Miasojedow B., Rockova V.)

Main algorithm:

lambda = create_lambda_ bhqg(ncol(X),fdr=0.10)
list.res = ABSLOPE(X, y, lambda)

A fast and simplified algorithm (C++):
list.res.slobe = SLOBE(X, y, lambda)
Coefficient and support recovery:

list.res$beta
list.res$gamma

36



Contribution 3:

Controlled model selection with
non-parametric regression model

(preprint, 2020)

MISSKNOCKOFF: COMIRSOS}'&](E; A%%IABLE SELECTION

WEI JIANG?, SZYMON MA]EWSKI MALGORZATA BOGDAN?®, JULIE JOSSE!, ASAF WEINSTEIN*

1. CMAP, ECOLE POLYTECHNIQUE & INRIA XPOP, FRANCE 2. UNlVERSlTY OF WARSAW, POLAND
3. UNIVERSITY OF WROCLAW, POLAND & LUND UNIVERSITY, SWEDEN 4. THE HEBREW UNIVERSITY OF JERUSALEM



Model-X assumption (complete data)

Similar setting (High-dimensional sparse regression) and aim (FDR
control) as ABSLOPE:

n lld samples (Xila Xig, ce ,Xip, yi)?:l
ind. .
yi|(Xi1,...,Xip)n'}v Py|Xa ’L:L...,TL
but:

¢ Conditional distribution P x not specified (non-parametric)

¢ Distribution of X is known (model-X)

38



fa

Knockoff method (complete data)

Non-parametric model selection with knockoff (Candes et al., 2018)
@ Generate “fake” variables (without looking at y)

Covariate X Knockoff copies X

T[]
EEEEEN generate

v

L ] ]
+  Correlation between X jand Xy
= Correlation between X; and X, (j # k)

e Correlation between X; and X5
= Correlation between X; and X, (j # k)

= Knockoffs have same structure but all null.
39



Knockoff method (complete data)

Non-parametric model selection with knockoff (Candes et al., 2018)
@ Generate “fake” variables (without looking at ¥)

@ Measure variable importance

Response y Covariate X Knockoff copies X
L[] ]
~
L[] ]
L]
LASSO 2.2y, ... 2y Z).D,....Z)

=(|ﬂ1|’|ﬂ2|1“"|ﬁplv |Bl|’|ﬁ2|7'“’|ﬁp|)

¢ Null variable: Z; d Z;

¢ Important variable: Z; >> Z;
39



fa

Knockoff method (complete data)

Non-parametric model selection with knockoff (Candes et al., 2018)
@ Generate “fake” variables (without looking at ¥)

@ Measure variable importance

Response y Covariate X Knockoff copies X
HEEEEEN
Iad
HEEEEEN
HEEEEEN
LASSO 2.2y, 2, Z21.2,,....7)

@ Select variables more important than their knockoff copies:
° Large Wj = Zj — Zj
e W; > 7 a threshold to control FDR at ¢:
L+ #{j: W; < —t}}
#ii: W >t}

szin{t>0:
39



a Multiple knockoffs (complete data)

Single knockoff — instability = Multiple knockoffs

Response y Covariate X Knockoff copies X() Variable

importance

[T [ [ [ ]| P

| INEEEN LASSO .
1 [ [ [ —— (W,

40



fa

Multiple knockoffs (complete data)

Single knockoff — instability = Multiple knockoffs

Response y

Covariate X

-
[ [ ]| ]
L T[T [T]

L]
e
I .

Knockoff copies )?(2

L [ [ ][]
b )

N
I

*®

LASSO
—

LASSO

Variable
importance

(1)
(W e

{u{fa)}j:l.u.,p

Aggregation

W®) o, 7

40



Contribution:

¢ Combine single knockoff with single imputation

Covariate X Completed X Knockoff copies X
HEN NN | [ [ P[]
[ [T [ Impute L T [T [ 1] generate
EEE_EE | ° | EEEpa. |
| | [ [ ] [ [ 1 [ ]
HE EEN [ [ [

41



Contribution:

¢ Combine single knockoff with single imputation

Covariate X Completed X Knockoff copies X

] O

L [T L[] Impute EEEEEE generate

[ [ [ [ ] [T

| ][] T[]

[ | ] I

L L

Response y Completed X Knockoff copies X Variable

[ ] .-.... importance
| LT[ [ [T LASSO
= ~ ===.== _ { vvj}j=],2 ,,,,, D
[ | .
u L

41



missKnockoff: multiple imputation

Contributions:
® Multiple imputation = single knockoff on each imputed dataset values
® Suggest new aggregation rules (inspired by multiple knockoffs)

- take variability into account

42



fa

missKnockoff: multiple imputation

Step1: Bootstrap B times

Bootstrap sample X!) Completed b Knockoff copies X(V
][] HEEE
HEERR ..Estlmate Impute .-...- generate

(EREREE™ " SpmaaR
T | -=====
L[ [ [ L[| [ ]

Covariate X
---l:l--

I Bootstrap

[ | [ ]
([ | [ [ |
On each bootstrap sample, estimate the covariance (Schneider, 2001; Lounici et al., 2014):

9O = (67" —§7%) diag (Zn) + 0 °S, = impute p(Xmis| Xobs)

0: the proportion of observed entries
Y n: the linear shrinkage estimation on empirical covariance of initially
imputed dataset by 0. 42



fa

missKnockoff: multiple imputation

Step1: Bootstrap B times

Bootstrap sample X Completed XV Knockoff copies XV

[ T[T [[] EEEEEE
- .-..Estimate Impute .-.

HEEEN__, _ . mm
[ 1]

Y@
Covariate X X
HEN EE
[ | ]
[ ] T[]
HEEN .
X®

42



a missKnockoff: multiple imputation

Step2: Measure variable importance

Responsey  Completed XV Knockoff copies X Variable
- N i
= ---.-- importance
B | eeeEE- sso
. { j }f:l ..... P
] )
[ |
%@
P N
= [ [ |
W~ == LASSO
. .. — {"V, }j:I ..... P
= [ Aggregation
[ | |
7B
o
— I LASSO vy )
= = ep
[ |

43



a missKnockoff: multiple imputation

Step3: Aggregation by averaging the cases

Responsey  Completed X" Knockoff copies X Variable

H N importance
[ |

LASSO
= ~ — {Wj(l)}jzl ..... »
[ |
[ |

)
g ~N

| | [ [ [ [ ]]
5 | mmEa LAss0
| T =[] W),
[ | EEEEEE ’ .
= ====== { Aggregation

@ Estimate the knockoff threshold:

) 5 #{iw® <l
T:mln{t:%zb_1W—<q} .
SR

@ Calculate the median of {Wj(b)} overb=1,2,--- , B to obtain ;.

If W; > 7 = Select j-th variable. 43



a Theoretical result

Theorem (FDR control for single missKnockoff)

missKnockoff procedure with single imputation from p(X 5| Xobs) controls FDR at level q.
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E Theoretical result

Theorem (FDR control for single missKnockoff)

missKnockoff procedure with single imputation from p(Xmis|Xops) controls FDR at level q.

Theorem (FDR estimation for multiple missKnockoff)
Consider the single missKnockoff procedure, which rejects Ho; : 8; = 0 if W; > t, and let

#{j € Ho: W; >t}
#{j:W; >t}

Then for the multiple missKnockoffs procedure with variable importance statistics { W]l.’}:

L& #{jzwj(")g—t}
E|= > FDR(t).
= #{iw® 2

FJISVR/;:M

FDR(t) =E [

44



Theoretical result

Theorem (FDR control for single missKnockoff)

missKnockoff procedure with single imputation from p(X 5| Xobs) controls FDR at level q.

Theorem (FDR estimation for multiple missKnockoff)
Consider the single missKnockoff procedure, which rejects Ho; : 5; = 0if W; > t, and let
#{j € Ho: W; >t}

#{i: W; 2t}

Then for the procedure with variable importance statistics { W;’}:

B # {j : Wj(b) < —t}

D

= #{iw® 2

FDR(t) =E [

> FDR(t).

|~

° for missKnockoff with B bootstrap is an upwards biased estimator of
FDR (t), with variance which diminishes with B (for ¢ > 0 and B > 1).
¢ TItholds almost surely that limp_, =F [FDR(t) | Xobs» y] ,

the right side = the conditional expectation of estimated false discovery
proportion provided by the single missKnockoff procedure. 44



Simulation results (few competitors)

n =p =500
Signal strength 1.3v/2logp (left) / strong 3+/21log p (right).

kg

3 40
ff iss10Knockoff qtknockoff
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General conclusion

Comprehensive framework for dealing with missing values
from estimation to model selection for logistic regression model

* Methodology, algorithm, simulations
* R package misaem

New methods for high-dimensional model selection with FDR
control (parametric/ non-parametric)

* Methodology, algorithm, theoretical results, simulations
* R package ABSLOPE

Analysis of hospital dataset (TraumaBase)

* Improve health care (interpretability, transparency)

* Results presented at French Society of Anesthesia &
Intensive Care Medicine (SFAR) meeting

¢ TraumaBase mobile application under development

46



Bienvenue

Constantes du patient

BeaujonAPHP.

Jean-Michel

< Précedent

Prédiction

& infor

ion non di
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Perspectives

Extension to deal with mixed incomplete covariates with both
continuous and categorical, ordinal and binary data (ongoing)

* General location model (Zhao and Udell, 2019)
* Gaussian copula (Zhao and Udell, 2019)

Extension of ABSLOPE (ordered /; penalty) in generalized linear
models

Extension to another missing mechanism (MNAR)

Testing unconditional independence (Candes et al., 2018) with
missing values (to improve the power for missKnockoff)

48
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Appendix 1:
Logistic regression with missing
covariates



Variance estimation

Observed Fisher information matrix (FIM) wrt

_ 82£(97 X0b57 y)

7(0) = 90007



Variance estimation

Observed Fisher information matrix (FIM) wrt

62£(9; Xobsa y)

20 = =000

Louis formula

_ 80(6; X, y) ,
I(0)=—-E <6080T|X0bs,% 9)

a0(0; X, y) 00(6; X, )T
-E < 90 90 ’Xobsayae

oL(6; X, y) , o0(0; X, ) 2\
+ E (aaXobsaya 9) E (60|Xobsvyv 0 .

Given the MH samples of unobserved data
(X(m) 1<i<n,1<m<M),and the SAEM estimate §

7,mis?

= Estimate FIM by empirical means.



Simulation study: SAEM behavior

Step size: v, = (k — k1) "

ki1 =50and 7 = (0.6,0.8,1.0).

N = 1000, p = 5, percentage of missingness= 10%
4 repetitions of simulations and 500 iterations:

By

] Mo 200 w0 a0 50 6 Mo 200 w0 a0 50 6 o 200 w0 a0 500
iteration



Method comparison: coverage

Table: Coverage (%) for n = 10000, calculated over 1000 simulations.

parameter noNA CC mice SAEM

Bo 95.2 944 952 94.9
B1 96.0 947 939 95.1
B2 95.5 946 940 94.3
B3 94.9 943  86.5 94.7
Ba 94.6 942  96.2 95.4
Bs 95.9 944  89.6 94.7

n = 1000 n = 10000

N

no NA cc mice SAEM no'NA cc mice SAEM

o
e
R

Standard error of i,
o
o
3

o
°
I




Model selection results

Table: For data with or without correlation, percentage of times that
different criterion selects the correct true model (C), overfit (O), i.e.
select more variables, and underfit (U) select less variables.

Non-Correlated  Correlated
Criterion C O U CcC O U

AIC,, 60 40 0 65 32 3
AIC,;, 73 27 0 75 20 5
AIC,. 67 32 1 77 16 7
BICy, 92 3 5 94 2 4
BIC,; 9% 2 2 B 0 7
BIC. 79 1 20 91 0 9




Method comparison: execution time

Table: Comparison of execution time between no NA, MCEM, mice,
and SAEM with n = 1000 calculated over 1000 simulations.

Execution time (seconds) no NA MCEM mice SAEM

min 2.87 x 1073 492 0.64 9.96
mean 4.65 x 1073 773 0.70 13.50
max 43.50 x 103 1077 0.76 16.79




Exploration of dataset

Data preprocessing = 6384 patients in the dataset.

Clinical experience = 14 influential quantitative measurements
Based on penalized observed log-likelihood:

= Observations resulting in a very small value of the log-likelihood.

= wrong records

Individuals factor map (PCA)

Dim 2 (13.32%)

Dim 1 (31.18%)



Predictive performance

Random split : training set (70%) + test set (30%) ( repeated 15 times)

5.0

Validation error
N »
o o

o«
o

3.0

e

2 3 4 5 6
cost(FN)
cost(FP)

T
10

Methods

TASH
doctor
— ABC
— predSVM
predRF
— mice
missForest
— SAEM



Appendix 2:
ABSLOPE



False discovery rate control

In an orthogonal design:

§=XTy=X"Xp+X"e =8+ X"e ~ N(B,0°I,).
Selecting model < multiple tests: Hy ; : 3; = 0. To control the FDR at
level g, (Benjamini and Hochberg, 1995)

O sort [y =+ = [3])
@ corresponding hypotheses H (1), , Hy
© rejects all H(;) for which



https://www.jstor.org/stable/2346101

False discovery rate control

In an orthogonal design:

§=XTy=X"Xp+X"e =8+ X"e ~ N(B,0°I,).
Selecting model < multiple tests: Hy ; : 3; = 0. To control the FDR at
level g, (Benjamini and Hochberg, 1995)

O sort [y =+ = [3])

@ corresponding hypotheses H (1), , Hy

© rejects all H(;) for which
_
= 5’

) > o1 - %‘)}7 qi

iSiBH:max{i:

For SLOPE, if we set A\gp (j) = ¢~ (1 — ¢j), q; = %—g, then

FDR—E [#False re]ectlons] < b0

ZRejections < q?, po = # true null hypotheses


https://www.jstor.org/stable/2346101

E SLOPE -> ABSLOPE

Proposition
Assume that a random variable z = (21, 22, - - , 2p) has a SLOPE prior:
2 . 1
p(z | a5 A) o jl;[leXP {_;)‘r(z,j)|zj|} ,
and then define § = 11" 'z = (2, , 7). Finally the prior of 3
corresponds to ABSLOPE

P I(v,=1) 1
p(B|7y,¢,0%A) ¢2im Hexp {—“‘/Iﬂjlg/\r(nﬂm} ;
J



E Details of Simulation step

Xmis ~ P(Xmis | v, ¢, Y, Xobs, B,0,0, My E)
= P(Xmis | Y, Xobs, B, g, K, E)
X P(y I Xobs, Xmis, B, 0’) p(Xmis | Xobs) Hs 2)

Proposition

Let M be the set containing indexes for missing covariates and O for the observed ones.
Assume that p(Tobs, Tmis; 2, 1) ~ N (w, B) and let y = x3 + € where e ~ N (0, 02). For
all the indexes of the missing covariates i € M, we denote:

— 2
mi = E HiSiq, Ui = E Obsszka T =Y — TobsPobs, Ti = \/ Sii t+ ﬁl /0'27

keO

with s;; elements of ¥~ L and Bops the observed elements of B.
Let fi = (f1;)iec m be the solution of the following system of linear equations:

. 2 A
T',Bz/(f + m; Uq _ Z Biﬂ]/g +SL7 ~j — /11 , forulli c M7

7 T
JEM, jF#i
BiBj /o> +sij ifi £ j
and let B be a matrix with elements: B;; = TiTj ’ , then for
1, ifi=j
z = (2i)iem where z; = Tzl ;. we have

£ I xobsvy;zvﬂvﬁvoz ~ N(/j‘vBil) .



Stochastic Approximation step

When step-size 1, = 1 < Stochastic EM (SEM) Estimation <

maximizing comp

Xinis Vet
Update  for an example:
B = awgmax — oy — X082~ 0 S w8 s
3 Q(O't_l)2 ot—1 = JIPIAr(WEB,5)
where X = (Xops, Xls)-
& Solution of SLOPE, given W, X! . and o~ 1.

= proximal gradient.



Basic Idea of proximal gradient

SLOPE is a convex optimization problem of the form

min f(8) = g(8) + h(B)

g : smooth and convex h : convex but not smooth
At each iteration, compute a local approximation to g:

1
H$ - ﬁtHQa

g(B") +(Vg(B"), — ") + o

where 7 is a step size. Then update 3!
1
B = argmin g(8%) + (Vg(8"), @ — B') + o-lle = B'|]* + h(x)

= argmin (8" ~ 199(5) — 2] + h(z)
= prox, , (4" ~ 1Vg(4")

The prox of I, norm is given by entry-wise soft thresholding.



Criterion

Model selection results

1 0
True False
g 1 | Positive Negative
g (TP) (FN)
@
£
=
False True
0 | Positive Negative
(EP) (TN)
FN .
* FDR = zxi7w 7
* Power = 751y

« Relative MSE = 13-4

]



Bias of beta

7o T
1- sparsity

Power

1- sparsity

Bias of 5

Percentage NA
- o1
- 02
- 03

Percentage NA
- o1
- 02

- 03

1.00

o T 2
1- sparsity

FDR

Prediction error

1 - sparsity

Prediction error

Percentage NA
- 01
- 02
- 03

Percentage NA
- o1
-~ 02

- 03



Appendix 3:
missKnockoft



missKnockoff: handling missing values

Contributions:
¢ Combine multiple imputation = single knockoff on each imputed dataset values
¢ Suggest new aggregation rules (averaging the cases)
LASSO
Y

knockoff copies

27 aggregation & rejection
2o X, — X! (21, 21) Wi

estimate covariance .
<7?
imput

225 X2, — X2 (22, Z2) % W2 W <7
S , > ?

\\
' =

median over 1mputat10n number

e Zn — Zn
KXeomp Mo XM, — XM ——— (Zum,Zn)
fitted coefficients
merge
Xobs

FDR threshold




missKnockoff: handling missing values

Input: X = (Xmis, Xobs) (rows can have different pattern of missing values);
forb=1,2,---, Bdo

(Bootstrap: reflect sampling variability in covariance matrix estimate)

o Bootstrap X with missing values.

9 On bootstrap samples, estimate the covariance (Schneider, 2001; Lounici et al., 2014):

£ = (571 - 672) diag (£4) + 5%,

with § the proportion of observed entries and 3, the linear shrinkage estimation on empirical
covariance of initially imputed dataset by 0.

(Generate multiple knockoff and compute importance measures)

o With 3%, impute missing values X‘l,’nis from p(Xmis | Xobs) and generate knockoff copies xPb
from p (5( | X = (Xobs, Xf;is
9 On the set (y, X ) x(®) ), use LASSO to obtain fitted coefficient vectors and statistics:
(&) _ ‘A(b)l 7(0) _ |A(b)
z" = BV, Z" = |55

Jitp
e Calculate variable importance W;b) = Z](.b) — Z~J(.b), j=1,2,---,p.
(Aggregation by averaging the cases)
o Estimate the knockoff threshold: 7 = min < ¢ : % ZbB=1 ’ {J :_ij S <gq
#{];wbj Zt}\/l
9 Calculate the median of {W,;, ; } overb = 1,2, - - - , B to obtain W;.

if W; < 7 then
Reject j-th variable. _
Output: Indexes for model selection {j : W; > 7}.



Theoritical result

Theorem (FDR control for single missKnockoff)

missKnockoff procedure with single imputation from p(X,is|Xobs) controls
FDR at the level q.

Sketch of proof:

If we generate values for missing covariates with:

A

Xinis ~ p(Xmis | Xobs)a
5 d
= (XobsaXmis) =X.
A ~ d ~
= (XobSa KXmis, X)swap(S) = (Xv X) :
= Design matrix with imputed missing values satisfies the
exchangeability condition.
= it satisfies the definition of model-X knockoff.
= FDR control.
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